ESTRALIN Nivc

POWER CABLES
AND CABLE SYSTEMS 6－220 KV

MODERN SOLUTIONS
FOR POWER CABLES

XLPE power cables 2
Production technology3
Estralin HVC - a pioneer in Russia's XLPE cable production 4
Main types of products and services 5
Markings6
XLPE cables 6-35 kV 7
Comparative characteristics
Advantages
General descriptionTechnical specification
Output capability
Short-circuit currents
Electrical specification
Requirements for cable laying and testingCapacity of cable drums
XLPE cables 110-220 kV 19
Comparative characteristics
Advantages
General description
Technical specification
Output capability Short-circuit currents Electrical specification
Requirements for cable laying and testing

Cables $6-35 \mathrm{kV}$ and $110-220 \mathrm{kV}$ are widely used for electric energy transmission and distribution especially in large cities and at production plants, where electric energy consumption and load density levels are particularly high. Although basic requirements to cables (i.e. reliability, functionality, low costs of maintenance) are obvious they should be thoroughly met because their violation can cause considerable financial losses.

Cable's service life should be long; their function is to provide continuously the consumer with sufficient amount of electric power. Unlike cables with paper-filled or oil-filled insulation that find limited use from year to year, cables with cross-linked polyethylene insulation (Russian designation is - СПЭ, English - XLPE, GermanVDE, and Swedish - PEX) meet that requirement in full.

Medium and high voltage XLPE cables due to the design, modern production technology and perfect materials have better electric and mechanical properties and the longest service life among other types of cables of mass production.

XLPE cables transfer capability is substantially higher than that of cables with paper or oil-filled insulation. According to international standards procedure, the cable is designed for continuous service with conductor temperature of $90^{\circ} \mathrm{C}$ and it is still active under emergency conditions even at higher temperatures, while oil-filled with paper insulation cables can withstand heating only to $70^{\circ} \mathrm{C}$.

Advantage of XLPE cable is its environmental safety. Absence of liquid inclusions ensures maintaining clean environment, which permits its laying at any projects and service-free maintenance of cable lines.

Due to its single core design, cable laying is easier, as well as the installation accessories, even in the most extreme conditions. Cable laying is still possible at temperatures up to $-20^{\circ} \mathrm{C}$ with polyethylene cable sheath.

XLPE cable production technology was first introduced in the 70s of XX century. The cross-links are a space lattice constructed using formation of longitudinal and transversal ties between macromolecules of polymer.With its physical and electrical properties, cross-linked polymer suits ideally for insulation of medium, high and extrahigh voltage cables.

During production of XLPE cable a special attention is paid on the purity and quality of insulating materials, as any inclusions released to the insulation reduces the life of the cable. It is for this reason, the concept of clean rooms, excluding ingress of foreign particles, as well as interaction with reliable suppliers of high quality raw materials, are one of the foundations of the production of reliable cable with a long trouble-free operation time.

It should be stressed that insulation and electrically conducting screens are applied in the process of triple extrusion followed with the simultaneous cross-linking of all three layers. Such a technology ensures high adhesion between the screens and insulation.

Advantages of the enhanced design and modern production technology of XLPE cables have determined their universal application in developed countries and notable decrease in the use of other type cables.

Estralin HVC - a pioneer in Russia's XLPE cable production

The aim of the plant "Estralin High Voltage Cables" (Estralin HVC) is introduction of innovative technologies in the field of power cable production. Providing high-quality production and services, we are helping our customers to raise their competitiveness and reduce the adverse impact upon environment.
Estralin HVC pays attention to technologies development and advancement that provide high quality of manufactured products. Only best materials of leading world manufacturers are used for cable insulation. These are peroxide-cross-linked polyethylenes, triingostable (TSPE) and copolymer (CCPE) polyethylenes. High skilled personnel and the use of high-quality basic materials are the key to perfect production that complies the requirements of advanced Russian and international standards and equals its WestEuropean counterparts.

Continuous control over all phases of the process, starting with the choice of cable and accessories at the design stage and up to commissioning of completed cable line, permits the Company fully satisfy customer's requirements to modern cable lines. A systematic approach of complying international quality standards has been introduced at the factory.

High emphasis is placed upon environmental aspects of the production. Estralin HVC's successes in development and introduction of quality assurance systems and environmental management have been recognized by the largest independent European certification Company, TUV CERT: the Plant was awarded certificates of conformity with regulatory requirements ISO 9001: 2008.

A main activity of Estralin HVC is XLPE cable $6-220 \mathrm{kV}$ production, which use in insulated or earthed networks.

All cables, by their design, technological data and service characteristics comply the international standard requirements: IEC 60502-2 (635 kV cables), IEC 60840 (110 kV cables), and IEC 62067 (220 kV cables), as well as with the GOST R certification, including those with regard to fire safety.

Our company offers:

- medium and high voltage cable accessories;
- technical support at all stages of cooperation.

Conductor material	Without designation	Copper conductor
	A	Aluminum conductor
	RMS	Segmented conductor
Insulation material	Y	PVC insulation
	2XS	XLPE insulation
Screen	S	Copper wire and copper tape screen
	SE	Copper wire and copper tape screen around each cable conductor
	(F)	Watertight screen from swelling tape which provides longitudinal water sealing
	(FL)	Watertight screen from swelling tape which provides longitudinal water sealing and laminated polymer
Armouring	F	Wires armouring from galvanized steel
	G	Armouring: tape from galvanized steel winding with 2 spirals in the opposite directions
	B	Armouring from double steel tape
	R	Armouring from galvanized steel wire of coaxial shape
Sheath	K	Lead sheath
	Y	PVC sheath
	2Y	XLPE sheath
	H	Halogen free flame retardant sheath
	LWL (following screen designation)	Optic fibers in steel tubing inserted into copper

A2XS(FL)Y-A-LWL 1x1600RMS/185 64/110 kV

Example ${ }^{1}$:

Comparative characteristics	6-35 kV XLPE-cables	Paper-insulated cables	
		10 kV	$20-35 \mathrm{kV}$
Continuous permissible temperature, ${ }^{\circ} \mathrm{C}$	90	70	65
Permissible heating in emergency, ${ }^{\circ} \mathrm{C}$	130	90	65
Maximum permissible temperature under short-circuit current flow, ${ }^{\circ} \mathrm{C}$	250	200	130
Minimum cable laying temperature without pre-heating, ${ }^{\circ} \mathrm{C}$	-20	0	0
Relative permittivity ε at $20^{\circ} \mathrm{C}$	2,4	4,0	4,0
Dielectric loss ratio tg δ at $20^{\circ} \mathrm{C}$	0,001	0,008	0,008
Level differential at cable laying operation, m	not limited	15	15

Main advantages of XLPE-cables are:

- big cable transmission capability due to increased conductor permissible temperature (permissible load currents are 15-30\% higher than those of paper-insulated cables, depending on cable laying conditions);
- high-current thermal stability at short circuit that is of a special importance when a cross-section has been chosen on the basis of short-circuit nominal current only;
- light-weight, smaller diameter and bending radius, which facilitates cable laying in both cable structures and underground along complicated routes;
- feasibility of cable laying at temperatures up to $-20^{\circ} \mathrm{C}$ without preheating due to the use of polymer materials in insulation and screening;
- low specific damageability (practice of XLPEcables employment demonstrates that their damage resistance at least is 1-2 orders lower than that of paper-insulated and cables);
- absence of any liquid components (oils), and therefore, time and cost of cable laying and installation is reduced;
- single-core design permits cable to produce with a conductor with cross-section up to 1000 mm 2 that is optimal for a large-power transmission;
- large lengths for construction: up to 20004000 m.

Take into account that the main type of single core cable faults are single-phase short circuit; it is possible to confirm that repair costs are drastically cut.

Strong insulation provides enormous advantages at the cable laying over a sloping, hilly or rough terrain, i.e. along the routes with considerable level difference, in vertical and inclined collectors.

Design

$6,10,20$ and 35 kV XLPE cable consists of a round copper or aluminum stranded conductor, a semiconductive layer over the conductor, a crosslinked polyethylene insulation, a conductive layer on the insulation, a conductive tape, a screen of cooper wires and a copper band, a separating layer, a high-density polyethylene sheathing, and a PVC plasticate sheathing or PVC plasticate sheath of reduced combustibility with reduced smoke and gas emission, or a sheath of halogenfree polyethylene composite.

In order to ensure the screen longitudinal sealing, a water-blocking conductive tape can be used in place of a conductive tape, and a water-blocking conductive tape layer can replace a separation layer.

Cables indexed «FL» are provided with an alumopolymer tape sheath welded to the polyethylene or PVC sheath apart from having longitudinal sealing. Such a design creates an effective diffusion barrier stopping penetration of water vapors; and an outside sheath of black polyethylene provides protection against mechanical damage.

Field of application

2XS2Y, A2XS2Y, cables are used for underground lines for complicated sections of the routes, as well as for overhead lines providing proper fire protection. Cables with longitudinal sealing could be used for underground lines in humid soils and in damp, partially flooded premises.

2XSY, A2XSY, 2XS(FL)Y, and A2XS(FL)Y cables are used for cable structures and industrial premises (2XS(Fl)Y and A2XS(Fl)Y - in batch laying), and also underground in dry soils.

2XS(FL)Y-LS and A2XS(FL)Y-LS cables are intended for stationary overhead batch lines, in cable structures and premises that have specified limitation on smoke consistency in fire situations.

2XS(Fl)Y-HF and A2XS(Fl)Y-HF are used for stationary electrical installations inside public and industrial buildings limited by requirements restricting impact of corrosive gases.

XLPE cables 6-10 kV

$6-10 \mathrm{kV}^{1}$ XLPE cable specifications

${ }^{1}$ All data in Table 1 apply for categories A and B networks (acc. to IEC 60183).
${ }^{2}$ Cross-section of the screen shown in the Table is minimal. Cross-section of the screen is chosen under condition of shortcircuit current.
${ }^{3}$ Weight, outside diameter and continuous permissible cable currents are for cable types 2XS2Y и A2XS2Y with minimal cross-section of the screen. If a larger screen cross-section is desired, continuous permissible cable currents get lower because of increased losses in the screen.
4 Deviation from the nominal construction length is $\pm 1 \%$.

XLPE cables 20 kV

20 kV XLPE cable specifications

1 Cross-section of the screen shown in the Table is minimal. Cross-section of the screen is chosen under condition of shortcircuit current.
2 Weight, outside diameter and continuous permissible cable currents are for cable types 2XS2Y и A2XS2Y with minimal cross-section of the screen. If a larger screen cross-section is desired, continuous permissible cable currents get lower because of increased losses in the screen.
${ }^{3}$ Deviation from the nominal construction length is $\pm 1 \%$.

XLPE cables 35 kV

35 kV XLPE cable specifications

1 Cross-section of the screen shown in the Table is minimal. Cross-section of the screen is chosen under condition of shortcircuit current.
2 Weight, outside diameter and continuous permissible cable currents are for cable types 2XS2Y и A2XS2Y with minimal cross-section of the screen. If a larger screen cross-section is desired, continuous permissible cable currents get lower because of increased losses in the screen.
3 Deviation from the nominal construction length is $\pm 1 \%$.

Continuous permissible currents are fixed for each cable line under service conditions with regard to specific requirements. At different design ambient temperatures, it is advised to use corrective ratios, given in the following Table.

Medium voltage cables load capacity is calculated for the following conditions:

Laid in ground:	
load factor	1,0
depth of cable laying	$0,7 \mathrm{~m}$
soil thermal resistance	$1,2 \mathrm{~K} \cdot \mathrm{~m} / \mathrm{W}$
ambient temperature, t°	$15^{\circ} \mathrm{C}$
conductor temperature, t°	$90^{\circ} \mathrm{C}$

Laid in air

load factor	1,0
ambient temperature, t°	$25^{\circ} \mathrm{C}$
conductor temperature, t°	$90^{\circ} \mathrm{C}$

When single-core cables are fixed in triangle formation they are laid immediately adjacent. When single core cables are laid in flat formation, clear distance between them is one cable diameter.

Correction factors for ambient temperatutre												
Temperatutre	-5	0	5	10	15	20	25	30	35	40	45	50
in ground	1,13	1,10	1,06	1,03	1,00	0,97	0,93	0,89	0,86	0,82	0,77	0,73
in air	1,21	1,18	1,14	1,11	1,07	1,04	1,00	0,96	0,92	0,88	0,83	0,78

Correction factors for specific soil resistance						
Soil specific thermal resistance, K•m/W	0.8	1,0	1.2	1.5	2.0	2.5
Correction factor	1,13	1,05	1,00	0,93	0,85	0,8

Correction factors for the laying depth

Depth of cable laying, m	0,50	0,70	0,90	1,00	1,20	1,50
Correction factor	1,05	1,00	0,96	0,95	0,93	0,9

XLPE cables 6-35 kV

Correction factors on number of working cables arranged in plane side by side underground in pipes or without pipes, are used, when a section of a cable line between the earthing points is partially laid in pipes, under following conditions:

- cable are laid in a triangle formation over a substantial part of the line section;
- pipes are laid in flat formation;
- length of piping composes less than 10% of the section between the earthing points;
- each cable is laid in a separate pipe;
- pipe diameter is twice cable diameter.

Correction factors for side by side laying of the $\mathbf{6 , 1 0 , 1 5 , 2 0}$ and 35 kV cables	
Cables partially laid in separate pipes	0,94
Cables in separate pipes on a plane	0,90
Single-conductor cables laid in triangle for mation in a common pipe	0,90

Correction factors for group of cables in the ground					
Clear	Number of groups				
distance					
between groups, mm	2	3	4	5	6
100	0,76	0,67	0,59	0,55	0,51
200	0,81	0,71	0,65	0,61	0,49
400	0,85	0,77	0,72	0,69	0,66

| Correction factors for group of cables in air
 arranged in a triangle | | |
| :---: | :---: | :---: | :---: |
| Number of cables/systems on a rack | | |

XLPE cables 6-35 kV

Short-circuit currents

Short-circuit current for all types of cables and cross-sections are calculated on the basis of the following conditions:

Conductor temperature		Screen temperature	
before short-circuit	$90^{\circ} \mathrm{C}$	before short-circuit	$70^{\circ} \mathrm{C}$
after short-circuit	$250^{\circ} \mathrm{C}$	after short-circuit	$350^{\circ} \mathrm{C}$

Permissible conductor one-second short-circuit current														
Conductor cross-section $\mathbf{m m}^{2}$	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
Copper conductor	7,15	1,00	13,6	17,2	21,5	26,5	34,3	42,9	57,2	71,5	90,1	114,4	143,0	172,8
Aluminum conductor	4,7	6,6	8,9	11,3	14,2	17,5	22,7	28,2	37,6	47,0	59,2	75,2	93,9	114,3

Permissible screen one-second short-circuit current					
$\begin{gathered} \text { Screen }^{1} \\ \text { cross-section } \\ \text { mm }^{2} \end{gathered}$	16	25	35	50	70
1-sec. screen short-circuit current , KA	3,3	5,1	7,1	10,2	14,2

If short-circuit duration differs from 1 sec., shortcircuit values shown in the Tables are multiplied by correction coefficient:
$K=1 / \sqrt{ }$, where $t-$ short-circuit duration, sec

[^0]
XLPE cables 6-35 kV

Electrical specification

Conductor's DC resistance at $20^{\circ} \mathrm{C}, \Omega / \mathrm{km}$, not less		
Nominal cross- section of conductor, mm^{2}	Copper conductor	Aluminum conductor
50	0,3870	0,6410
70	0,2680	0,4430
95	0,1930	0,3200
120	0,1530	0,2530
150	0,1240	0,2060
185	0,0991	0,1640
240	0,0754	0,1250
300	0,0601	0,1000
400	0,0470	0,0778
500	0,0366	0,0605
630	0,0280	0,0464
800	0,0221	0,0367
1000	0,0176	0,0291
1200	0,0151	0,0247

Conductor resistance at temperatures, different from $20^{\circ} \mathrm{C}$, is calculated with the formula:

for copper conductor:

$\mathrm{R}_{\tau}=\mathrm{R}_{20} \cdot(234,5+\tau) / 254,5$
for aluminum conductor:
$R_{\tau}=R_{20} \cdot(228+\tau) / 254,5$
where:
τ - conductor's temperature, $\left({ }^{\circ} \mathrm{C}\right)$,
R_{20} - conductor resistance at $20^{\circ} \mathrm{C}$, (Ω / km),
$R_{\tau}-$ conductor resistance at $d^{\circ} \mathrm{C}$, (Ω / km)

Cable capacitance for various voltage levels, $\mu \mathrm{F} / \mathrm{km}$														
	Conductor cross-section, mm^{2}													
	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
6	0,300	0,340	0,390	0,420	0,450	0,500	0,560	0,610	0,620	0,670	0,750	0,840	0,930	1,040
6/10	0,255	0,2891!	0,328	0,351	0,384	0,423	0,468	0,516	0,569	0,630	0,700	0,792	0,880	0,983
10/10	0,226	0,254	0,288	0,307	0,336	0,370	0,410	0,450	0,493	0,550	0,610	0,680	0,757	0,845
15	0,207	0,230	0,262	0,280	0,305	0,325	0,369	0,405	0,445	0,492	0,548	0,615	0,680	0,759
20	0,179	0,200	0,225	0,240	0,260	0,285	0,313	0,343	0,376	0,414	0,460	0,515	0,568	0,633
35	0,130	0,143	0,159	0,168	0,181	0,196	0,214	0,230	0,253	0,277	0,305	0,399	0,371	0,411

XLPE cables 6-35 kV

Charging current for various voltage levels, A / km

Conductor cross-section, mm^{2}

Voltage, kV

| Conductor inductive reactance at frequency |
| :---: | :---: | :---: | :---: | :---: |
| of $\mathbf{5 0} \mathbf{~ H z 1 , ~} \mathbf{\Omega} / \mathbf{k m}$ |

Calculation of inductive reactances are carried out with cables arranged in a triangle immediately adjacent, and in flat formation with clear distance between the cables equal to cable diameter.

[^1]
XLPE cables 6-35 kV

Cable laying conditions and testing after medium voltage cable laying

Bending radius of XLPE cable during cable laying procedure shall be at least $15 x \mathrm{D}$, where $\mathrm{D}-$ outside cable diameter. When cable accessories installation is carried out with the use of a special template minimal bending radius is permitted to be reduced down to template $7,5 x \mathrm{D}$.

When installing with the use of a cable sleeve or taking by the conductor, pulling tension shall not exceed the following figures:
$\mathrm{F}=\mathrm{Sx} 50 \mathrm{~N} / \mathrm{mm}^{2}$ - for copper conductor,
$\mathrm{F}=\mathrm{Sx} 30 \mathrm{~N} / \mathrm{mm}^{2}$ - for aluminum conductor, where S - conductor area of the cross-section, mm^{2}.

Cable temperature during installation shall be not lower than:
$-15^{\circ} \mathrm{C}$ - for cables with PVC- plasticate sheath;
$-20^{\circ} \mathrm{C}$ - for cables with polyethylene sheath.
This is achieved when keeping the cable in warm (about $20^{\circ} \mathrm{C}$) premises during 48 hours or with the use of special equipment.

After cable laying and accessories installation it is recommended to conduct testing with the following AC voltage, frequency $0,1 \mathrm{~Hz}$ during 15 minutes:

10 kV cable with 18 kV ,
15 kV cable with 45 kV ,
20 kV cable with 60 kV ,
35 kV cable with 105 kV voltage.
It is permissible to test with AC voltage of industrial frequency during 24 hours:

10 kV cable with 6 kV ,
15 kV cable with $8,7 \mathrm{kV}$,
20 kV cable with 12 kV ,
35 kV cable with 20 kV voltage.
On completing the installation and in coordination with cable manufacturing plant, cable testing is permitted with DC voltage of $4 \mathrm{U}_{0}$ during 15 minutes.

Cable sheath shall be tested with DC voltage of 10 kV , applied between the metallic screen and earthing device during at least 1 minute.

XLPE cables 6-35 kV

Capacity of cable drums

XLPE cable delivery length, m			
Cable outside	Cons	lengt	e, m
diameter, mm	22D	24D	25D
26	2405	4566	6593
27	2230	4234	6113
28	2073	3937	5685
29	1933	3670	5299
30	1806	3430	4952
31	1692	3212	4638
32	1587	3014	4352
33	1493	2835	4092
34	1406	2670	3855
35	1327	2520	3638
36	1254	2382	3439
37	1187	2255	3255
38	1126	2138	3086
39	1069	2029	2930
40	1016	1929	2785
41	967	1836	2651
42	922	1750	2526
43	879	1669	2410
44	840	1594	2302
45	803	1524	2201
46	768	1459	2106
47	736	1397	2018
48	706	1340	1934

XLPE cable delivery length, m			
Cable outside diameter, mm	Construction length of cable, m		
	22D	24D	25D
49	677	1286	1856
50	650	1235	1783
51	625	1187	1713
52	601	1142	1648
53	579	1099	1587
54	557	1059	1528
55	537	1020	1473
56	518	984	1421
57	500	950	1372
58	483	918	1325
59	467	887	1280
60	452	857	1238
61	437	830	1198
62	423	803	1159
63	410	778	1123
64	397	754	1088
65	385	731	1055
66	373	709	1023
67	362	688	993
68	352	668	964
69	341	648	936
70	332	630	910

6, 10, 20 and 35 kV XLPE cable construction lengths are presented in the Table, they can be accommodated in standard wooden cable drums.

Construction lengths can be increased in coordination with customer using drums of greater capacity. In this way a special cable-carrying trucks; can be used in addition, one should be aware of oversized cargo transportation rules.

Comparative characteristics	XLPE cable	High pressure oil-filled cable
$\begin{aligned} & \text { Continuous } \\ & \text { permissible } \\ & \text { temperature, }{ }^{\circ} \mathrm{C} \end{aligned}$	90	85
Permissible heating in emergency, ${ }^{\circ} \mathrm{C}$	105	90
Ultimate permissible temperature under short-circuit current flow, ${ }^{\circ} \mathrm{C}$	250	200
short-circuit current, $\mathrm{A} / \mathrm{mm}^{2}$		
- copper conductor	144	101
- aluminum conductor	93	67
Relative permittivity ε at $20^{\circ} \mathrm{C}$	2,5	3,3
Dielectric loss ratio, $\operatorname{tg} \delta$ at $20^{\circ} \mathrm{C}$	0,001	0,004

Main advantages of XLPE cables are the following:

- high cable transmission capability due to increased conductor permissible temperature;
- high-current thermal stability at short-circuit that is of a special importance when a crosssection has been chosen on the basis of shortcircuit nominal current only;
- light-weight,smaller diameter and bending radius, which facilitates laying in both cable structures and underground along complicated routes;
- strong insulation provides enormous advantages at the laying over a sloping, hilly or rough terrain, i.e. along the routes with considerable level difference due to absence of mass dulling effect;
- absence of liquids (oils) under pressure, and consequently, no need for costly refilling equipment, that results in considerable saving in operational costs, simplification of installation equipment, cutting time and cost of cable laying, as well as installation;
- feasibility of prompt repair in case of fault;
- absence of leakages and, therefore, no risks of environmental pollution in case of damage.

Design

110-220 kV XLPE cable consists of a round copper or aluminum stranded conductor, a semiconductive layer over the conductor, a cross-linked polyethylene insulation, a semiconductive layer on the insulation, a semiconductive tape, a screen of cooper wires and a copper band, a semiconductive tape, a polyethylene sheathing, or PVC plasticate sheathing.

The conductor is covered with an extrudable screen of semiconducting material, insulation and a semiconducting screen over the insulation binded together. Insulation thickness depends upon the conductor diameter.

Metallic screen consists of copper wires and a spirally applied over them a copper band. Screen cross-section is chosen on the basis of short-circuit current flow.

In order to provide longitudinal sealing in cables indexed «F», a layer of water-swellable material is used. Contacting with water it swells thus forming a longitudinal barrier, preventing in this way moisture propagation, should damage of outside sheathing occur.

Cables indexed «FL» are provided with an alumo-polymer tape sheath welded to the polyethylene or PVC sheath apart from having longitudinal sealing. Such a design creates an effective diffusion barrier stopping ingress of water vapors; and an outside sheath of black polyethylene provides protection against mechanical damage.

Reinforced polyethylene stiffened sheath.
Cables have a sheath of black polyethylene. Cables indexed « $2 \mathrm{Y} »$ are provided with reinforced polyethylene longitudinally stiffened sheath that is designed for preventing the sheath damage while cabling at complicated sections of cable routes.

On request of customer $110-220 \mathrm{kV}$ cables can be produced with optic fiber inserted for temperature measurements along the entire length of the cable and for transmitting any signals.

XLPE cables 110 kV

110 kV XLPE cable specification

1 Screen cross-section is calculated on the basis of the short-circuit current and thus can be increased. .
2 Weight is shown for cables having a polyethylene sheath and basic cross-section of the screen.
3 Calculation was performed in cabling with cables in triangle formation with immediate adjacency and earthing from both sides.
4 Currents are calculated to be buried at the depth of $1,5 \mathrm{~m}$ with soil specific thermal resistance of $1,20 \mathrm{~K} \bullet \mathrm{~m} / \mathrm{W}$, and load coefficient, $\mathrm{KH}=0,8$
5 Currents are calculated for installation in air with cables in triangle formation, clear interphase distance shall be equal to cable diameter, no solar radiation, and earthing from both sides.
6 Currents are calculated for installation in air with cables in flat formation, clear interphase distance shall be equal to cable diameter, no solar radiation, and earthing from both sides.

XLPE cables 220 kV

220 kV XLPE cable specification

Nominal cross-section	mm^{2}	400	500	630	800	1000	1200	1400	1600	2000	2500
Screen cross-section ${ }^{1}$	mm^{2}	265	265	265	265	265	265	265	265	265	265
Insulation thickness	mm	24,0	24,0	24,0	24,0	22,0	22,0	22,0	22,0	22,0	22,0
Sheath thickness		4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0
D outside	mm	92,3	95,3	98,9	105,4	106,1	108,9	110,6	119,7	122,7	126,2
Weight approx. ${ }^{2}$ Al conductor Cu conductor	kg/km	9158 11685	9739 12899	10463 14445	11630	11999	12834	13000	14960	16352	33000 33000
Min. bending radius	cm	138	142	148	158	159	163	166	179	184	190
Permissible pulling force Al conductor Cu conductor	kN	12,0 20	15,0 25,0	$\begin{aligned} & 18,9 \\ & 31,5 \end{aligned}$	$\begin{aligned} & 24,0 \\ & 40,0 \end{aligned}$	30,0 50 1	$\begin{array}{r} 36,0 \\ 60,0 \end{array}$	42,0 70	48,0 80,0	$\begin{gathered} 60,0 \\ 100,0 \end{gathered}$	$\begin{gathered} 75,0 \\ 125,0 \end{gathered}$
DC resistance Cu conductor Al conductor	Ω / km	0,047 0,0778	0,0366	0,028	0,0221 0,0367	0,0176 0,0291	0,0151 0,0247	0,0129 0,0212	0,0113	$\begin{gathered} 0,009 \\ \underline{0,014} 9 \end{gathered}$	$\begin{aligned} & 0,0072 \\ & 0,0119 \end{aligned}$
Inductance ${ }^{3}$		0,254	0,236	0,219	0,203	0,18	0,167	0,155	0,152	0,139	0,126
Capacitance	$\mu \mathrm{F}$	0,133	0,143	0,154	0,174	0,119	0,220	0,220	0,240	0,230	0,270
Continuous permis. earth current ${ }^{4}$	A	638	711	785	$\begin{aligned} & 868 \\ & \underline{7} 31 \end{aligned}$	$\begin{aligned} & 938 \\ & 803 \end{aligned}$	$\begin{aligned} & 986 \\ & 858 \end{aligned}$	$\begin{gathered} 1038 \\ -914 \end{gathered}$	$\begin{gathered} 1072 \\ \underline{9} 48 \end{gathered}$	$\begin{aligned} & 1133 \\ & 1018 \end{aligned}$	$\begin{aligned} & 1149 \\ & 1068 \end{aligned}$
Continuous permis. earth current $\bigcirc \bigcirc \quad \begin{array}{ll} \mathrm{Cu} \\ \mathrm{Al} \end{array}$	A	620 521	670 $\underline{572}$	725 631	774 686	812 734	862 782	892 816	910 841	940 883	$\begin{array}{r} 960 \\ 915 \end{array}$
Continuous permis. air current ${ }^{5}$ O	A	800	908 734	1031 841	1160 955	1281 1071	1380 1174	1471 1260	1547 1339	$\begin{aligned} & 1669 \\ & 1464 \end{aligned}$	$\begin{aligned} & 1720 \\ & 1550 \end{aligned}$
Continuous permis. air current ${ }^{6}$ $\bigcirc \quad \begin{array}{ll} \mathrm{Cu} \\ \mathrm{Al} \end{array}$	A	796 658	884 743	977 836	1063 927	1136 1013	1232 1101	1297 1166	1327 1211	1393 1295	1481 1395

1 Screen cross-section is calculated on the basis of the short-circuit current and thus can be increased.
2 Weight is shown for cables having a polyethylene sheath and basic cross-section of the screen.
${ }^{3}$ Calculation was performed in cabling with cables in triangle formation with immediate adjacency and earthing from both sides.
4 Currents are calculated to be buried at the depth of $1,5 \mathrm{~m}$ with soil specific thermal resistance of $1,20 \mathrm{~K} \bullet \mathrm{~m} / \mathrm{W}$, and load coefficient, $\mathrm{KH}_{\mathrm{H}}=0,8$
5 Currents are calculated for installation in air with cables in triangle formation, clear interphase distance shall be equal to cable diameter, no solar radiation, and earthing from both sides.
${ }^{6}$ Currents are calculated for installation in air with cables in flat formation, clear interphase distance shall be equal to cable diameter, no solar radiation, and earthing from both sides.

XLPE cables 110-220 kV

Load capacity

Load capacity of high voltage cables is calculated under the following conditions.

Laid in ground:	
load factor	0,8
depth of cable laying	$1,5 \mathrm{~m}$
soil thermal resistance	$1,2 \mathrm{~K} \cdot \mathrm{~m} / \mathrm{W}$
ambient temperature, t°	$15^{\circ} \mathrm{C}$
conductor temperature, t°	$90^{\circ} \mathrm{C}$

Laid in air:

load factor 1,0
ambient temperature, $t^{\circ} \quad 25^{\circ} \mathrm{C}$
conductor temperature, $\mathrm{t}^{\circ} \quad 90^{\circ} \mathrm{C}$
screen earthing

For underground installation and with triangle arrangement, cables shall be positioned in immediate adjacency. For overhead lines and triangle arrangement of cables the clear distance between cables is recommended be equal to 25 sm . With flat arrangement of cables, recommended clear distance between cables shall be cable diameter.
Correction factor on laying depth

Laying depth, \mathbf{m}	0,8	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4
Correction factor	1,08	1,05	1,03	1,01	1,0	0,98	0,97	0,96	0,94

Short-circuit currents

Short-circuit current for all types of cables are calculated on the basis of the following preconditions:

Conductor temperature	
before short-circuit	$90^{\circ} \mathrm{C}$
after short-circuit	$250^{\circ} \mathrm{C}$

Conductor temperature

after short-circuit $250^{\circ} \mathrm{C}$

XLPE cable can be subjected to overloads with temperatures above $90^{\circ} \mathrm{C}$. In this regard, emergency overloads do not considerably affect cable service life.
One-second long permissible short-circuit currents along the conductor and through the screen shall not exceed the figures presented in the Tables.

Screen temperature

before short-circuit
after short-circuit

1 sec . permissible short-circuit current in the conductor												
Conductor cross-section, mm^{2}	185	240	300	350	400	500	630	800	1000	1200	1600	2000
copper conductor	26,5	34,3	42,9	50,1	57,2	71,5	90,1	114,4	14	172,8	230	288
aluminum conductor	17,5	22,7	28,2	33,1	37,6	47	59,2	75,2	93, 1	14,3	152	190

1 sec. permissible short-circuit current the screen										
Screen cross-section, mm^{2}	35	50	70	95	120	150	185	210	240	265
Screen 1-sec. shortcircuit current, KA	7,1	10,15	14,21	19,29	24,36	30,45	37,56	42,63	48,72	53,8

In the case of short-circuit, apart from the heating, the dynamic forces originated between cable phases shall be also taken into consideration; their values can be significant. They shall be taken into account while choosing design of cable fixing means.

Cable laying conditions and testing after high voltage cable laying

During XLPE 110-220 kV cable laying the bending radius shall be at least $15 x \mathrm{D}$, where $\mathrm{D}-$ outside cable diameter. When cables accessories installation is carried out with the use of a special template and with preheating, minimal bending radius shall also be at least $15 x \mathrm{D}$.

When installing with the use of a cable sleeve or taking by the conductor, pulling force shall not exceed the following figures
$\mathrm{F}=\mathrm{Sx} 50 \mathrm{~N} / \mathrm{mm}^{2}$ - for copper conductor, $\mathrm{F}=\mathrm{Sx} 30 \mathrm{~N} / \mathrm{mm}^{2}-$ for aluminum conductor
where S - conductor area of the cross-section, mm^{2}.

Ambient temperature during laying shall not be lower than $-5^{\circ} \mathrm{C}$. With preheating, cable laying can be carried out at the following temperatures:
$-15^{\circ} \mathrm{C}$ - for cables with PVC-plasticate sheath;
$-20^{\circ} \mathrm{C}$ - for cables with polyethylene sheath.

Following cable installation, testing of completed cable line together with all the cable accessories shall be conducted.

Having completed a cable line and prior to its commissioning, each phase of the cable and its accessories shall be tested by increased AC voltage of 128 kV during one hour with frequency of 20 to 300 Hz . As agreed between manufacturing company and customer, it is permitted to conduct testing by nominal working AC voltage of 64 kV during 24 hours at no load, instead of the test by increased AC voltage. The test by increased DC is feasible, but not recommended, and only as agreed between manufacturing company and customer.

Cable sheath shall be tested by DC of 10 kV , applied between a metallic screen and earthing for one minute.

During Estralin HVC cable laying the requirements of «Maintenance of XLPE cable laying 110-500 kV, №ТИ/01-12» should be met.

Estralin
 High Voltage Cables Plant

111024, Moscow

Box office а/я 130
2nd Kabelnaya Str., bld 2
Tel.: +7 (495) 9566699
Fax: :+7 (495) 2343294
e-mail: info@estralin.com
web-site: www.estralin.com

Information:

We reserve the right to introduce to the present catalogue technical alterations or corrections without notice. When ordering equipment, only mutually agreed data shall be valid.

Estralin HVC shall not be responsible for any potential misprints of losses of information in the catalogue.

All rights to the present document, both to the test and to the figures, belong to Estralin HVC. Any reproduction, complete or partial, without a written permission from Estralin HVC is prohibited.

ESTRALIN

HIGH VOLTAGE CABLES PLANT

111024, Moscow
Box office a/я 130
2nd Kabelnaya Str., bld 2

tel.: $\quad+7$ (495) 9566699
 fax: +7 (495) 2343294
 e-mail: info@estralin.com

www.estralin.com

We reserve the right to introduce to the present catalogue technical alterations or corrections without notice.
When ordering equipment, only mutually agreed data shall be valid.

[^0]: 1 Values of permissible short-circuit currents for different cross-sections of the screen are calculated on request.

[^1]: 1 Inductive values are calculated with regard to the screen earthing from both sides.
 2 Inductive reactance values for other classes of voltage and another arrangement of cables are calculated on request.

